Physics Laboratory (Common to all branches)

Course Type: General Institute Requirement (GIR)	Pre-requisites: Nil
Course Code: PHIR12	No. of Credits: 02

Course Objectives

- 1. To introduce the spirit of experiments to verify physics concepts such as reflection, refraction, diffraction and interference on light matter interaction.
- 2. To perform experiments to estimate the materials properties and to check their suitability in science and engineering.
- 3. To familiarize physics concepts and to design instruments and experimental set up for better and accurate measurements.
- 4. To teach and apply knowledge to measure and verify the values of certain constants in physics.
- 5. To perform experiments in electricity, magnetism and mechanics to understand their applications.

LABORATORY

- 1. Determination of rigidity modulus of a metallic wire
- 2. Conversion of galvanometer into ammeter and voltmeter
- 3. Wavelength of laser using diffraction grating
- 4. Dispersive power of a prism Spectrometer
- 5. Radius of curvature of lens-Newton's Rings
- 6. Numerical aperture of an optical fiber
- 7. Field along the axis of a Circular coil
- 8. Wavelengths of white light Spectrometer
- 9. Calibration of Voltmeter Potentiometer
- 10.Thickness of a thin wire Air Wedge
- 11. Specific rotation of a liquid Half Shade Polarimeter
- 12. Photoelectric effect Planck's constant

References

- 1. Physics Laboratory Manual, Department of Physics, National Institute of Technology Tiruchirappalli (2018).
- 2. Practical Physics, R.K. Shukla, Anchal Srivastava, New age international (2011).
- 3. B.Sc. Practical Physics, C.L Arora, S. Chand & Co. (2012).

Course Outcomes

On completion of this course, the students will be able to:

- 1. calibrate and operate voltmeter, ammeter, potentiometer and galvanometer.
- 2. demonstrate the principle of dispersion, diffraction, interference and polarization using optical instruments like spectrometer, travelling microscope and polarimeter.
- 3. design experimental setup in order to verify concepts of wave and particle nature of light.
- 4. explain the principle of light propagation in fibers and light matter interactionusing lasers and conventional light sources.
- 5. acquire knowledge of electricity, magnetism and mechanics to estimate the fundamental constants in Physics.

Laboratory		Aligned Programme Outcomes (PO) with level of correlation											
PHIR12		Programme Outcomes (COs)											
(so		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12
Course comes(C	CO1	Н	-	-	Н	М	-	-	-	-	M	-	М
	CO2	Η	1	-	Н	М	-	-	-	-	М	-	М
	CO3	M	Н	Н	Н	-	-	-	-	-	M	-	М
Out	CO4	Н	-	M	Н	Н	-	Н	-	-	M	-	М
	CO5	Н	М	-	Н	-	-	Н	-	-	M	-	М